
BLIND COLOR DECONVOLUTION AND CLASSIFICATION OF HISTOLOGICAL IMAGES
USING THE HYPERBOLIC SECANT PRIOR.

Francisco M. Castro-Macı́asa,b,∗, Fernando Pérez-Buenoa,b, Miguel Vegac, Javier Mateosa,
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ABSTRACT

In this paper, we present a novel approach to Blind Color De-
convolution, a stain separation technique useful for normaliz-
ing, augmenting, and automatically diagnosing histological
images. To robustly estimate the stain colors and concen-
trations, we follow the Bayesian framework and introduce a
Gaussian prior distribution on the color vectors and a Hyper-
bolic Secant prior on the concentrations, which is a seldom
explored image model.

We provide a comprehensive mathematical derivation of
our inference procedure, outlining the underlying principles
and assumptions. To demonstrate its effectiveness, we con-
duct two experiments. The first experiment assesses the fi-
delity of the reconstructed images to the underlying tissue
characteristics. The second experiment uses it as a prepro-
cessing step for a multicenter breast cancer classification task.
Our results reveal the superior performance of the proposed
method, underscoring its potential for advancing histological
image processing and AI-assisted diagnosis.

Index Terms— Blind Color Deconvolution, Bayesian
modeling, histological images

1. INTRODUCTION

Histological images are stained to highlight the tissue struc-
ture, enabling pathologists to distinguish the elements in the
tissue by their distinctive staining. The main objective of
Blind Color Deconvolution (BCD) is to disentangle the stain
mixture in the observed RGB image, obtaining a color-vector
matrix, and a concentration matrix that represents the amount
of stain per pixel. BCD can be used to normalize and aug-
ment histological images, but also to feed Computer-Assisted
Diagnosis (CAD) systems, which benefit from stain-separated
data [1, 2, 3]. Furthermore, BCD has been proven to be es-
pecially important in standardizing histological image analy-
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sis and mitigating performance variations when dealing with
images from different sources. This has been identified as a
major issue in CAD system development [4, 5].

BCD methods rely on the Beer-Lambert law [6], which
establishes a bilinear relationship between the observed im-
age and the underlying stain color-vector matrix and concen-
trations in the logarithmically inverted Optical Density (OD)
space. Estimating the color-vector matrix and concentrations
from the observed image is an ill-posed problem since infi-
nite combinations of color and concentrations can produce
the observed image. Different regularization and optimiza-
tion techniques have been explored to estimate the unknowns
(see [4] for a review), such as Non-Negative Matrix Factor-
ization [7, 8], Singular Value Decomposition [9, 10], In-
dependent Component Analysis [11], or clustering [12, 13].
In the Bayesian approach, the regularization constraints are
modeled as prior probability distributions. In [14], a similar-
ity prior is proposed for the color-vector matrix, along with
a Simultaneous Autoregressive prior on the concentrations to
achieve smoothness. In [1], the authors suggested using a To-
tal Variation prior on each stain, while in [2] the use of Super
Gaussian (SG) distributions is used to promote sparsity in the
concentrations.

In this work, we propose to use the Hyperbolic Secant
(HS) distribution as a prior for the concentrations [15]. Since
the HS distribution is also a SG distribution, its sparsity-
promoting properties make it appropriate for the BCD task.
Notably, this distribution admits a Gaussian Scale Mixture
(GSM) representation, which allows us to leverage a princi-
pled data augmentation approach to approximate the posterior
distribution. The proposed approach is evaluated in the stain-
separation task, as well as in the breast cancer classification
task. In both tasks, the use of the HS prior resulted in im-
proved performance compared to previous BCD methods,
especially those based on other SG priors.

The rest of the paper is organized as follows: The pro-
posed Bayesian modeling and inference are presented in
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Fig. 1. Penalty functions of different SG distributions [2]:
the HS (red), the Gaussian (orange), the l1-norm (blue), and
the log (green).

sections 2 and 3, respectively. In section 4, the proposed
method is experimentally evaluated and compared with other
approaches in the literature. Finally, section 5 concludes the
work.

2. BAYESIAN MODELING

In this work, we follow a Bayesian approach to solve the
BCD problem. Each observed H × W RGB image I ∈
RHW×3 is transformed into the the observed OD image Y =
− log (I/i0) ∈ RHW×3, where i0 is the maximum incident
luminosity, set to 255. The Beer-Lambert law states that

Y⊤ = MC⊤ +N⊤, (1)

where M ∈ R3×S is the color-vector matrix, with S being
the number of stains, C ∈ RHW×S is the stain concentration
matrix, and N ∈ RHW×3 is a random noise matrix with i.i.d.
zero mean Gaussian components with precision β. We will
refer to the s-th column of C as cs, and to the s-th column
of M as ms. Also, given A ∈ N, we will denote [A] =
{1, . . . , A}.

Our goal is to estimate both C and M having observed ex-
clusively Y. From Eq. (1) we obtain the observation model,

p(Y | C,M, β) ∝ exp

(
−β

2

∥∥Y⊤ −MC⊤∥∥2
F

)
, (2)

where ∥·∥F represents the Frobenius norm.
Next, we define a prior for the concentrations. We explore

the use of the HS distribution, which belongs to the family of
the SG distributions [16]. The probability density function is
given by

f(x | α) = π

α
sech(αx), ∀x ∈ R, (3)

where α ∈ (0,+∞). Its penalty function is represented in
Figure 1 together with the penalty functions of other SGs pre-
viously used for BCD [2]. The HS distribution has heavier
tails and is more peaked than the Gaussian distribution, thus

promoting sparsity. Importantly, it belongs to the family of z
distributions [16] and therefore, its density can be expressed
as a GSM. This representation will be particularly relevant for
our inference procedure in the next section.

To take advantage of the sparsity-promoting properties of
the HS distribution, we formulate the model on the filtered
space [2]. Thus, we apply N high-pass filters {Fn}Nn=1 to
obtain N filtered concentrations cns = Fncs. Denoting the
components of cns by cnis, we define the prior for the concen-
trations as

p(C | α) ∝
N∏

n=1

S∏
s=1

HW∏
i=1

sech(αn
s c

n
is), (4)

where α = {αn
s : s ∈ [S] , n ∈ [N ]} are the distribution pre-

cision parameters, which define the global partition function.
Although the color-vector matrix is different for each im-

age, it is expected to be similar to a reference color-vector ma-
trix. For Hematoxylin-eosin (H&E) staining, the color vectors
proposed in [6] are typically used. Following [14], we incor-
porate this knowledge using the following prior,

p(ms | γ) ∝ exp
(
−γs

2
∥ms −ms∥2

)
, (5)

p(M | γ) =
S∏

s=1

p(ms | γs) (6)

where γ = {γs : s ∈ [S]}, and γs measures the confidence on
the accuracy of the reference ms.

With all these ingredients, the joint probability distribu-
tion is given by

p(Y,C,M | Λ) = p(Y | C,M, β)p(M | γ)p(C | α), (7)

where Λ = {β,γ,α} represents the hyperparameters.

3. BAYESIAN INFERENCE

Following the Bayesian paradigm, the inference procedure
will be based on the posterior distribution p(C,M | Y,Λ).
Since this posterior cannot be obtained in a closed form, we
approximate it using variational Bayesian inference [17]. The
use of the HS prior makes it impossible to obtain a closed-
form expression for the approximate variational posterior.
Fortunately, as we have already mentioned previously, the
density of the HS distribution can be expressed as a GSM,

f(x | α) =
∫ +∞

0

N
(
x | 0, ω−1

)
f̂(ω | α)dω, (8)

where f̂(ω | α) is a mixing density whose expression can be
obtained using the Pólya-Gamma distribution [18]. We lever-
age this representation by considering an augmented model in



which inference is tractable. We define

p(C,ω | α) = p(C | ω)p(ω | α), (9)

p(C | ω) ∝
N∏

n=1

S∏
s=1

HW∏
i=1

N (cnis | 0, (ωn
is)

−1), (10)

p(ω | α) =

N∏
n=1

S∏
s=1

HW∏
i=1

f̂(ωn
is | αn

s ), (11)

where ω = {ωn
is : i ∈ [HW ] , s ∈ [S] , n ∈ [N ]}. The origi-

nal p(C | α) is recovered by integrating out ω in Eq. (9).
The augmented joint probability distribution is given by,

p(Y,C,M,ω | Λ) = p(Y | C,M, β)p(M | γ)p(C,ω | α).
(12)

We follow the mean-field variational Bayesian approach
to approximate p(C,M,ω | Y,Λ) by the variational dis-
tribution q(C,M,ω) = q(C)q(M)q(ω), where q(M) =∏

s q(ms), q(C) =
∏

s q(cs), and q(ω) =
∏

n,s,i q(ω
n
is).

The variational factors, q(C), q(M), and q(ω), are ob-
tained by minimizing the Kullback-Leibler (KL) divergence
between the variational approximation and the true poste-
rior [17]. The expression for each factor, given by [17, Eq.
(10.9)], is detailed below.

Update of q(C). For s ∈ [S], from [17, Eq. (10.9)] we obtain
q(cs) = N

(
cs | µcs

,Σcs

)
, with

µcs
= βΣcs

Esµms
, (13)

Σ−1
cs

= βvmsI+

N∑
n=1

Fn⊤Θn
sF

n, (14)

where

µms
= Eq(ms) [ms] , µcs

= Eq(cs) [cs] , (15)

vms = Eq(ms)

[
∥ms∥2

]
= Tr (Σms) +

∥∥µms

∥∥2 , (16)

Θn
s = Eq(ωn

s )
[diag (ωn

s )] , (17)

Es = Y −
∑
k ̸=s

µck
µ⊤

mk
. (18)

Update of q(M). For s ∈ [S], from [17, Eq. (10.9)] we
deduce q(ms) = N

(
ms | µms

,Σms

)
, with

µms
= Σms

(
γsms + βE⊤

s µcs

)
, (19)

Σ−1
ms

=

(
γs + β

N∑
n=1

vncs

)
I, (20)

where vncs
= Eq(cs)

[
∥Fncs∥2

]
= Tr

(
Fn⊤FnΣcs

)
+∥∥Fnµcs

∥∥2. Following [2], we force the color-vectors to
be unitary by replacing µms

by µms
/
∥∥µms

∥∥ and Σ−1
ms

by∥∥µms

∥∥2 Σ−1
ms

.

Update of q(ω). For n ∈ [N ] , i ∈ [HW ], applying [17, Eq.
(10.9)] we obtain

log q(ωn
is) =Eq(cnis)

[
logN (cnis | 0, (ωn

is)
−1)
]
+ (21)

+ log f̂(ωn
is | αn) + const. (22)

Next, we observe that Eq(cnis)

[
logN (cnis | 0, (ωn

is)
−1)
]

=

logN (ξnis | 0, (ωn
is)

−1), with ξnis =
√

Eq(cnis)
[(cnis)

2]. There-

fore, we obtain q(ωn
is) ∝ N (ξnis | 0, (ωn

is)
−1)f̂(ωn

is | αn),
that, after normalization, becomes

q(ωn
is)f(ξ

n
is | αn

s ) = N (ξnis | 0, (ωn
is)

−1)f̂(ωn
is | αn

s ). (23)

Finally, we note that we only require Eq(ωn
is)

[ωn
is] to compute

Σ−1
cs

. We calculate it in closed form by adapting the proce-
dure in [19]. We differentiate under the integral sign in Eq.
(8), and use (23) to obtain

Eq(ωn
is)

[ωn
is] =

αn tanh(αnξ
n
is)

ξnis
. (24)

Approximating the covariance matrix of q(C). Note
that to compute vcs

we need the inverse of Σ−1
cs

, which
is a HW × HW matrix. Since this is computationally
prohibitive, we follow [2] and approximate it as Σcs

≈(
βvmsI+

∑N
n=1 θ

n
sF

n⊤Fn
)−1

, where θns is the mean of
the diagonal values of Θn

s .

The proposed BCD method. In light of the derived varia-
tional scheme, we propose the Variational Bayesian HS BCD
method outlined in Algorithm 1. Given a OD image Y, the
variational updates are applied iteratively until a convergence
criteria is met. Note that to avoid inverting Σ−1

cs
and Σ−1

ms

when computing µcs
and µms

, we solve their associated lin-
ear systems using the Conjugate Gradient method. Finally,
the color-vector and concentration for each stain s are esti-
mated as µms

and µcs
, respectively.

4. EXPERIMENTS AND RESULTS

To assess the performance of the proposed method, we con-
ducted two experiments. The first one evaluates the fidelity to
the underlying tissue characteristics. The second one employs
the processed images for a multicenter breast cancer classifi-
cation task.

4.1. Stain separation quality

To assess the quality of the proposed method in stain sep-
aration, we use the Warwick Stain Separation Benchmark
(WSSB) in [11], which includes 24 H&E stained images
of breast, colon, and lung tissues whose ground truth stain
color-vector matrices, MGT , were manually selected by a
pathologist. The ground truth concentrations were obtained



Table 1. PSNR and SSIM values for the different methods on the WSSB dataset [11]. Best values are marked in bold.
Image S RUI [6] MAC [9] VAH [7] ALS [11] SAR [14] TV [1] SG log [2] SG ℓ1 [2] HS (proposed)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Colon H 22.27 0.8141 23.91 0.8095 25.83 0.8851 21.11 0.7241 28.57 0.9542 28.62 0.9544 28.66 0.9531 29.01 0.9638 29.00 0.9636
E 20.70 0.7456 21.55 0.6365 26.29 0.8904 21.94 0.8540 27.58 0.9139 27.60 0.9161 27.74 0.9212 28.38 0.9414 28.43 0.9421

Breast H 15.27 0.6215 26.24 0.9552 25.46 0.9239 24.60 0.8068 28.81 0.9528 29.14 0.9560 29.23 0.9464 30.50 0.9751 30.49 0.9749
E 17.66 0.7644 23.62 0.9336 27.68 0.9550 25.92 0.9380 26.60 0.9464 26.76 0.9492 26.74 0.9444 27.71 0.9645 27.82 0.9650

Lung H 22.47 0.7987 19.52 0.7389 25.87 0.8912 20.62 0.5551 32.91 0.9763 33.10 0.9757 31.21 0.9415 35.21 0.9898 35.21 0.9897
E 22.05 0.7734 18.09 0.5088 25.53 0.8195 23.95 0.8939 30.77 0.9306 31.02 0.9353 29.99 0.9338 33.07 0.9654 33.14 0.9659

Mean H 20.00 0.7448 23.22 0.8345 25.72 0.9100 22.11 0.6953 30.10 0.9611 30.29 0.9621 29.70 0.9470 31.57 0.9762 31.56 0.9760
E 20.14 0.7611 21.08 0.6930 26.50 0.8883 23.94 0.8953 28.32 0.9303 28.46 0.9336 28.16 0.9331 29.72 0.9571 29.79 0.9577

Table 2. Area Under the Curve (AUC) values of the VGG19 classifier using the original and preprocessed images. Bold values
indicate the highest performance.

Original RUI [6] MAC [9] VAH [7] ALS [11] SAR [14] TV [1] SG ℓ1 [2] HS (proposed)

AUC 0.9491 0.9417 0.9499 0.7985 0.9738 0.9479 0.9305 0.9617 0.9788

Algorithm 1 Variational Bayesian HS BCD
Require: Observed RGB image I, reference color-vector

matrix M, and hyperparameters Λ.
Obtain the OD image Y from I and set, for each s, µ(0)

ms =

ms, Σ−1
ms

(0)
= 0, and Σ−1

cs

(0)
= 0. Set µ(0)

cs as the s-
th row of M+YT, with M+ ∈ RS×3 the Moore-Penrose
pseudo-inverse of M. Set t = 0.
while convergence criterion is not met do

1. Set t = t+ 1.
2. For each s, update Σ−1

ms

(t)
using Eq. (20) and solve

the linear system associated to Eq. (19) to obtain µ
(t)
ms .

3. Update (Θn
s )

(t−1) using Eq. (24).

4. For each s, update Σ−1
cs

(t)
using Eq. (14) and solve

the linear system associated to Eq. (13) to obtain µ
(t)
cs .

end while
Output m̂s = µ

(t)
ms and ĉs = µ

(t)
cs .

using C⊤
GT = M+

GTY
⊤, where M+

GT ∈ RS×3 is the Moore-
Penrose inverse of MGT .

The stain-separated H-only and E-only images were nu-
merically compared using the Peak Signal to Noise Ratio
(PSNR) and Structural Similarity (SSIM) metrics. In Table 1
we report the results obtained by our method and the methods
by Ruifrok et al. [6] (RUI), Macenko et al. [9], Vahadane et
al. [7] (VAH), Alsubaie et al. [11] (ALS), and the Bayesian
methods using the SAR prior [14], TV [1], and the SG log and
SG ℓ1 priors [2]. The SG ℓ1 prior and the proposed approach
achieve the best tissue fidelity, showing the advantage of us-
ing moderate kurtosis SG priors for the BCD problem. For
the E-only image, the proposed HS method achieves a better
reconstruction than the SG ℓ1 method while it is competitive
for the H-only image.

4.2. Breast Cancer classification

In this section, we study how different BCD methods affects
the performance of a VGG19 classifier on the Camelyon-17

database [20]. We use 500 breast tissue labeled WSIs from
5 medical centers in the Netherlands. Four centers are used
for training the VGG19, while the fifth is reserved for test-
ing. This configuration serves as a benchmark to evaluate the
presence of challenging color differences. Training and test-
ing sets contain approximately 100.000 and 25.000 patches
of size 224 × 224, respectively. Both sets are balanced in
positive and negative samples. The classifier is trained from
scratch using both the original and the normalized images [2],
given by the outputs of the different methods. The SG log
prior is not included in this experiment due to its excessive
computational cost [2].

The results, presented in Table 2, indicate that the image
preprocessing affects the classification results. Among the
evaluated methods, four lead to an improvement in perfor-
mance on unseen data, with the proposed HS method being
the most effective. Note that, although the proposed method
performs similarly to the SG ℓ1 in the stain separation task,
the classification performance demonstrate its superiority.

5. CONCLUSIONS

This work presents, for the first time in literature, the use of
the Hyperbolic Secant (HS) prior for BCD and examines its
use in stain separation and breast cancer classification tasks.
The HS prior belongs to the SG family and admits a GSM
representation that makes the inference tractable without re-
quiring a quadratic bound. It induces sparsity on the stain
concentration differences at neighboring pixels, which is a
theoretical feature of the stained tissue. In the stain separation
task, the proposed method demonstrates a proper stain sepa-
ration quality, improving the performance on the E-channel
compared to other methods. In terms of classification per-
formance, this enhancement resulted in the best classification
performance on unseen data from a new center.
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