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Multiple Instance Learning (MIL)

Multiple Instance Learning (MIL) is a weakly supervised learning paradigm that is particularly useful when
obtaining fine-grain annotations is expensive. This is the case of medical imaging and drug discovery.
The training data consists of pairs of the form (X, Y ) where X = [x1, . . . , xN ]> ∈ RN×P is a bag, and
xn ∈ RP are the instances. The instances have labels {y1, . . . , yN} ⊂ {0, 1}, which are not observed. Only
the bag label Y is observed, and it holds Y = max {y1, . . . , yN} ∈ {0, 1}.
At test time, given a new bag, we want to predict the bag label (classification task), and the instance labels
(localization task).

Figure 1. Whole Slide Image (WSI, bag) and labeled patches (instances).

Figure 2. Computerized Tomography (CT) scan (bag) and labeled slices (instances).

Background: Deep MIL

How do the most succesful deep MIL approaches work? Two important choices:

1. They assign an attention value fn ∈ R to each instance. These are used to generate the bag label
prediction and as a proxy to estimate the instance labels.

2. They incorporate both global and local interactions using different mechanisms: transformers, graph
neural networks...
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Figure 3. Architecture of deep MIL methods without interactions (left) and with interactions (right).

Problem. These methods have been designed to target the classification task... what about localization?
The implications of their design choices in this task have not been studied!
How to solve this? We propose a method to be competitive in both tasks!

Our idea: attention maps should be smooth

Observation. Instance labels show spatial dependencies: an instance is likely to be surrounded by
instances with the same label (see Figures 1 and 2).
If we want to use the attention values f to predict the instance labels, they should inherit this smoothing
property!

Method: modelling the smoothness

We represent each bag as a graph, where the nodes are the instances and the edges represent the spatial
connectivity between instances. We interpret the attention values f ∈ RN as a function defined on the bag
graph.
Dirichlet energy ED. Measure of the variability of a function defined on a graph [2].
Goal. We want to produce smooth f , i.e., to output f with low Dirichlet energy ED (f).
Bounding ED (f). We can bound the Dirichlet energy of the attention values using the previous layers. For
example, modelling f as in ABMIL [1], we have

ED (f) ≤ ‖w‖2
2 ED (F) ≤ ‖w‖2

2 ‖W‖2
2 ED (X)

where f = Fw, F = tanh
(

XW>
)

, and w, W are trainable weights. This results generalizes for arbitrary
depth (see the paper!).
Approach. We can act on f itself and on the output of previous layers. We develop the smooth operator
to decrease the Dirichlet energy of any kind of layer.

Method: the smooth operator Sm

Given U ∈ RN×D and γ ∈ R+, the Smooth operator (Sm) is defined as
Sm (U) = (I + γL)−1 U,

where L is the Laplacian of the bag graph.
Sm is principled. Trade-off between fidelity to the input signal and smoothness,

Sm (U) = arg min
G

{
αED (G) + (1 − α) ‖U − G‖2

F

}
, α ∈ [0, 1) .

Sm decreases the Dirichlet energy. If L is the normalized Laplacian matrix, then
ED (Sm (U)) < ED (U) .

Sm is cheap to compute. It can be computed iteratively,
Sm (U) = lim

t→∞
G(t),

G(0) = U; G(t) = α (I − L) G(t − 1) + (1 − α) U.

Method: the proposed model

We build on top of the well-known ABMIL [1], proposing two modifications.
SmAP. We add the smooth operator Sm in the attention pooling. It accounts for local interactions.
SmTAP. We use a transformer encoder to account for global interactions. We add the smooth operator Sm
both in the transformer and in the attention pooling, accounting for both global and local interactions.
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(a) ABMIL [1], the baseline.
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(b) SmAP. (c) SmTAP.
Figure 4. Proposed models.

Experiments: quantitative evaluation

Experimental setup. We evaluate the
two proposed models

on 3 different medical imaging datasets:
RSNA (CT scans), PANDA (WSIs), and
CAMELYON16 (WSIs),
using 4 different feature extractors,
trained with and without self-supervised
learning,
considering up to 13 different SOTA
methods for comparison,
in both localization and classification
tasks.

Instance
localization

Bag
classification

Without
global

interactions

SmAP 1.5000.548 1.8330.753
ABMIL 2.5001.225 2.5001.049
CLAM 4.1671.329 4.5000.837
DSMIL 4.3330.516 4.1670.753

DFTD-MIL 2.5001.049 2.0001.265

With
global

interactions

SmTAP 1.5001.225 1.8330.983
TransMIL 3.0831.429 4.0830.917
SETMIL 3.6670.816 3.5832.010

GTP 3.9171.429 2.7500.987
CAMIL 2.8331.169 2.7501.173

Table 1. Average rank (lower is better).

Results. The proposed methods with Sm achieve the best performance in localization and remain very
competitive in classification.

Experiments: attention histograms and attention maps

We examine the attention histograms and the attention maps produced by each model on the CAMELYON16
dataset. The proposed SmAP and SmTAP stand out at separating positive and negative instances.
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Figure 5. Attention histograms on CAMELYON16.

Patch labels SmTAP TransMIL GTP CAMIL
Figure 6. Attention maps on CAMELYON16.
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Check our code!

github.com/Franblueee/SmMIL
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