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Blind Image Deconvolution (BID)

?−→

y x



Blind Image Deconvolution (BID)

y = h ∗ x+ η, η ∼ N
(
0, β−1I

)

= ∗ +

y h x η

BID is ill-conditioned

Given y, there are infinitely many (x,h) such that the above equation holds... we
need to restrict the solution space.
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Idea: sparsity

When a high pass filter is applied to a sharp image, the resulting image is sparse.

Figure: Clean image and the resulting filtered images.

We need to look for solutions with this property! How? Using Super Gaussian (SG)
priors!
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The Hyperbolic Secant (HS) distribution

The Hyperbolic Secant (HS) density is given by

f(x;α) =
α

π
sech (αx) =

2α

π

(
eαx + e−αx

)−1
, ∀x ∈ R.

Two important properties

1. Gaussian Scale Mixture (GSM) representation: there exists a mixing density

f̂(ω;α) such that

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)f̂(ω;α)dω.

As a consequence, f is a Super Gaussian!

2. f is differentiable around zero (contrary to previously used SGs!)
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• Appears in different contexts: financial
mathematics, pricing of options, and
binary classification.

• Never used in BID!

• Connection to Brownian motion and the
Pólya-Gamma distribution.
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Pólya-Gamma distribution.

Two important properties

1. Gaussian Scale Mixture (GSM) representation: there exists a mixing density

f̂(ω;α) such that

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)f̂(ω;α)dω.

As a consequence, f is a Super Gaussian!

2. f is differentiable around zero (contrary to previously used SGs!)



The Hyperbolic Secant (HS) distribution

The Hyperbolic Secant (HS) density is given by

f(x;α) =
α

π
sech (αx) =

2α

π

(
eαx + e−αx

)−1
, ∀x ∈ R.

−4 −2 0 2 4

0.00

0.25

0.50

0.75

1.00

1.25

Gaussian

α = 1.0

α = 0.5

α = 4.0

Figure: Gaussian and HS distributions.

• Appears in different contexts: financial
mathematics, pricing of options, and
binary classification.

• Never used in BID!

• Connection to Brownian motion and the
Pólya-Gamma distribution.

Two important properties

1. Gaussian Scale Mixture (GSM) representation: there exists a mixing density

f̂(ω;α) such that

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)f̂(ω;α)dω.

As a consequence, f is a Super Gaussian!

2. f is differentiable around zero (contrary to previously used SGs!)



The Hyperbolic Secant (HS) distribution

The Hyperbolic Secant (HS) density is given by

f(x;α) =
α

π
sech (αx) =

2α

π

(
eαx + e−αx

)−1
, ∀x ∈ R.

Two important properties

1. Gaussian Scale Mixture (GSM) representation: there exists a mixing density

f̂(ω;α) such that

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)f̂(ω;α)dω.

As a consequence, f is a Super Gaussian!

2. f is differentiable around zero (contrary to previously used SGs!)



Plan

1. Blind Image Deconvolution

2. The Hyperbolic Secant (HS) distribution

3. Modelling and inference

4. Results

5. Conclusions



Modelling the problem

1. Consider a set of high-pass filters {Fn}Nn=1 and apply them to obtain a set of
pseudo-observations,

Fny︸︷︷︸
yn

= h ∗ Fnx︸︷︷︸
xn

+Fnη︸︷︷︸
ηn

.

2. The components of the probabilistic model are

p ({yn} | {xn} ,h,β) =
N∏

n=1

N
(
yn | h ∗ xn, β

−1
n I

)
,

p ({xn} | α) ∝
N∏

n=1

HW∏
i=1

sech(αnx
i
n),← Sparsity!

p (h) ∝ const .

3. The joint probabilistic model is given by

p ({yn} , {xn} ,h | β,α) = p ({yn} | {xn} ,h,β) p ({xn} | α) p (h)
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Inference

We aim to use mean-field variational inference to approximate

p({xn} ,h | {yn} ,α,β) ≈ q ({xn}) q (h) .

Problem: the closed form updates involve Eq({xn})
[
log sech(αnx

i
n)
]
→ Intractable!

Solution: Augmented prior on the filtered images

p
(
{xn}Nn=1 | ω

)
∝

N∏
n=1

HW∏
i=1

N
(
xi
n | 0,

(
ωi
n

)−1
)
, p(ω | α) =

N∏
n=1

HW∏
i=1

f̂(ωi
n;αn)

Because of the GSM representation, we recover the original model integrating in ω,

p ({xn} | α) =

∫
p ({xn} | ω) p(ω | α)dω
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Inference in the augmented model

p({xn} ,h,ω | {yn} ,α,β) ≈ q ({xn}) q (h) q(ω)

• The filtered images are given by q(xn) = N (xn |mxn ,Σxn), with

•

ĥ = arg min
h∈∆K

{
h⊤Ch− 2h⊤b

}
,

C and b depend on mxn
, Σxn

, and yn.

• For q(ω) we don’t need the full distribution, only its first moment. Its expression is a
consequence of the GSM representation,

Eq(ωi
n)

[
ωi
n

]
=

αn tanh(αnξ
i
n)

ξin
, ξin =

√
Eq(xi

n)
[(xi

n)
2].
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Algorithm

1. Iterate through the previous updates to approximate the optimal variational
distributions,

q0 ({xn})
q0 (h)
q0(ω)

−→
q1 ({xn})
q1 (h)
q1(ω)

−→ · · · −→
qT ({xn})
qT (h)
qT (ω)

2. The mode ĥ = argmaxh q
T (h) is used to estimate the latent clean image as

x̂ = arg min
x

{
1

2

∥∥∥ĥ ∗ x− y
∥∥∥2 + λ

N∑
n=1

∥Fnx∥p
}
,

with p = 0.8.
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Experimental framework

• We used the Levin data set.

• We compared the proposed method with

1. Other analytical approaches based on SGs priors: log, ℓ1, MoG, exp, Huber SG,
and ECP.

2. Deep Learning-based methods: SelfDeblur and Li.

• High-pass filters: first-order horizontal and vertical differences.

• Hyperparameters obtained using grid search: β = 104, α1 = 102.4, and α2 = 102.15.
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HS vs analytical approaches
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• The proposed HS achieves the best results in terms of absolute performance.

• It is faster than the other methods except Huber SG.



HS vs Deep Learning approaches
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• The proposed HS achieves competitive results in terms of absolute performance.

• It is faster than the other methods

• It does not need a GPU.



Comparison using real images

Observed SelfDeblur Li

HS (ours) Huber SG ECP



Plan

1. Blind Image Deconvolution

2. The Hyperbolic Secant (HS) distribution

3. Modelling and inference

4. Results

5. Conclusions



Conclusions

• First use of the HS distribution in BID.

• The GSM representation provides a new BID Bayesian method.

• Competitive or superior performance in the tested datasets.

• Future work:
• Automatic hyperparameter estimation.
• Extensive evaluation on larger datasets.
• Coupling the HS distribution with Deep Learning methods.
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Thank you! ♡
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