ABMIL
torchmil.models.ABMIL
Bases: MILModel
Attention-based Multiple Instance Learning (ABMIL) model, proposed in the paper Attention-based Multiple Instance Learning.
Given an input bag \(\mathbf{X} = \left[ \mathbf{x}_1, \ldots, \mathbf{x}_N \right]^\top \in \mathbb{R}^{N \times P}\), the model optionally applies a feature extractor, \(\text{FeatExt}(\cdot)\), to transform the instance features: \(\mathbf{X} = \text{FeatExt}(\mathbf{X}) \in \mathbb{R}^{N \times D}\).
Then, it aggregates the instance features into a bag representation \(\mathbf{z} \in \mathbb{R}^{D}\) using the attention-based pooling,
where \(\mathbf{f} \in \mathbb{R}^{N}\) are the attention values. See AttentionPool for more details on the attention-based pooling. The bag representation \(\mathbf{z}\) is then fed into a classifier (one linear layer) to predict the bag label.
__init__(in_shape=None, att_dim=128, att_act='tanh', gated=False, feat_ext=torch.nn.Identity(), criterion=torch.nn.BCEWithLogitsLoss())
Parameters:
-
in_shape
(tuple
, default:None
) –Shape of input data expected by the feature extractor (excluding batch dimension). If not provided, it will be lazily initialized.
-
att_dim
(int
, default:128
) –Attention dimension.
-
att_act
(str
, default:'tanh'
) –Activation function for attention. Possible values: 'tanh', 'relu', 'gelu'.
-
gated
(bool
, default:False
) –If True, use gated attention in the attention pooling.
-
feat_ext
(Module
, default:Identity()
) –Feature extractor.
-
criterion
(Module
, default:BCEWithLogitsLoss()
) –Loss function. By default, Binary Cross-Entropy loss from logits.
forward(X, mask=None, return_att=False)
Forward pass.
Parameters:
-
X
(Tensor
) –Bag features of shape
(batch_size, bag_size, ...)
. -
mask
(Tensor
, default:None
) –Mask of shape
(batch_size, bag_size)
. -
return_att
(bool
, default:False
) –If True, returns attention values (before normalization) in addition to
Y_pred
.
Returns:
-
Y_pred
(Tensor
) –Bag label logits of shape
(batch_size,)
. -
att
(Tensor
) –Only returned when
return_att=True
. Attention values (before normalization) of shape (batch_size, bag_size).
compute_loss(Y, X, mask=None)
Compute loss given true bag labels.
Parameters:
-
Y
(Tensor
) –Bag labels of shape
(batch_size,)
. -
X
(Tensor
) –Bag features of shape
(batch_size, bag_size, ...)
. -
mask
(Tensor
, default:None
) –Mask of shape
(batch_size, bag_size)
.
Returns:
-
Y_pred
(Tensor
) –Bag label logits of shape
(batch_size,)
. -
loss_dict
(dict
) –Dictionary containing the loss value.
predict(X, mask=None, return_inst_pred=True)
Predict bag and (optionally) instance labels.
Parameters:
-
X
(Tensor
) –Bag features of shape
(batch_size, bag_size, ...)
. -
mask
(Tensor
, default:None
) –Mask of shape
(batch_size, bag_size)
. -
return_inst_pred
(bool
, default:True
) –If
True
, returns instance labels predictions, in addition to bag label predictions.
Returns:
-
Y_pred
(Tensor
) –Bag label logits of shape
(batch_size,)
. -
y_inst_pred
(Tensor
) –If
return_inst_pred=True
, returns instance labels predictions of shape(batch_size, bag_size)
.