Max Pool
torchmil.nn.MaxPool
Bases: Module
Max pooling aggregation.
Given an input bag \(\mathbf{X} = \left[ \mathbf{x}_1, \ldots, \mathbf{x}_N \right]^\top \in \mathbb{R}^{N \times D}\), this model aggregates the instance features into a bag representation \(\mathbf{z} \in \mathbb{R}^{D}\) as,
\[
\left[ \mathbf{z} \right]_d = \max \left\{ \left[ \mathbf{x}_n \right]_{d} \ \colon n \in \left\{ 1, \ldots, N \right\} \right\},
\]
where \(\left[ \mathbf{a} \right]_i\) denotes the \(i\)-th element of the vector \(\mathbf{a}\).
__init__()
forward(X, mask=None)
Parameters:
-
X
(Tensor
) –Input tensor of shape
(batch_size, bag_size, in_dim)
. -
mask
(Tensor
, default:None
) –Mask tensor of shape
(batch_size, bag_size)
.
Returns:
-
z
(Tensor
) –Output tensor of shape
(batch_size, in_dim)
.