Mean Pool
torchmil.nn.MeanPool
Bases: Module
Mean pooling aggregation.
Given an input bag \(\mathbf{X} = \left[ \mathbf{x}_1, \ldots, \mathbf{x}_N \right]^\top \in \mathbb{R}^{N \times D}\), this model aggregates the instance features into a bag representation \(\mathbf{z} \in \mathbb{R}^{D}\) as,
\[
\mathbf{z} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n.
\]
__init__()
forward(X, mask=None)
Forward pass.
Parameters:
-
X
(Tensor
) –Input tensor of shape
(batch_size, bag_size, in_dim)
. -
mask
(Tensor
, default:None
) –Mask tensor of shape
(batch_size, bag_size)
.
Returns:
z: Output tensor of shape (batch_size, in_dim)
.